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Abstract. Computed tomography (CT) is the primary modality for imaging the lung cancer patients. However, the
differentiation of lung atelectasis and malignant tumours is hardly possible due to a very similar visual appearance.
In this paper, we explore the limits of the usefulness of CT image intensity information for discriminating the lung
atelectasis and tumour regions. The statistical significance of intensity differences as a function of voxel sample
size was assessed on CT scans of 40 lung cancer patients using unpaired t-test. The classification accuracy was
evaluated with the help of Hierarchical Clustering, Support Vector Machines, and Random Forests methods using
44000 training and test sets of voxels sampled at random. Visualisation of sample data vectors was performed using
a Multidimensional Scaling technique. The Hierarchical Clustering algorithm was found to be the best suited for
segmentation purposes with its potential segmentation accuracy of 4.1 mm for 2D and 2.0 mm for 3D cases.

1 Introduction

The atelectasis term denotes the collapse of all or part of a lung due to bronchial plugging or the chest cavity being
opened to atmospheric pressure. This can happen when the vacuum between the lung and chest wall is broken, allowing
the lung to collapse within the chest (e.g., pneumothorax), when the lung is compressed by masses in the chest, or when
an airway is blocked, leading to slow absorption of the distal air into the blood without replenishment. In this work we
were dealing with the bronchial compression caused by lung cancer tumours, the most common cause of the atelectasis.

Computed tomography (CT) is the primary modality for imaging lung cancer patients. However, on CT scans the lung
regions with the atelectasis and malignant tumours have quite similar attenuation values. Therefore the visual discrim-
ination and separation of the atelectasis and tumours is hardly possible [1], [2]. Yet an accurate tumour segmentation
is strongly necessary by the following two reasons. First, the correct tumour localisation, segmentation, and precise
measurement of tumour diameter play a crucial role in the therapy planning and choosing suitable surgery technique.
Second, if the radiation therapy is prescribed, an exact tumour border is required for precise targeting and accurate
delivery of the ionising radiation exactly to the tumour but not to the surrounding tissue [3].

This work should be considered as a part of more general project the ultimate goal of which is to develop methods
and software solutions for interactive discrimination and segmentation of cancerous tissue from the atelectasis. In this
paper, we exploring the limits of the usefulness of CT image intensity information alone for differentiation of lung
atelectasis and malignant tumours using statistical and pattern recognition methods. All the analyses were performed
intra-subjectly (eg, the training and test sets of image voxels were sampled from the same patient). This is because we
were mainly interested in performing differentiation of atelectasis and tumour regions in a gradient-like manner [4] for
each particular patient but not in the evaluating existing inter-subject distinctions.

2 Materials

In this study we used 40 CT images of the chest of patients with lung cancer and atelectasis of a portion of the lung
as diagnosed by a qualified radiologist and confirmed histologically. Thirty seven of them were males and remaining
three were females. The age of patients ranged from 41 to 80 years with the mean value of 61.1 and STD of 9.2 years.

CT scanning was performed on a multi-slice Volume Zoom Siemens scanner with the standard clinical kV and mA
settings during the one-breath hold. The voxel size was equal to 0.68 mm in the axial image plane with the slice
thickness equal to the inter-slice distance of 7 mm. No intravenous contrast agent was administered before the collection
of scan data. Typical example of original CT image slice and mean intensity values are shown in Fig. 1.
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Atelectasis and tumour regions were segmented manually in each image slice of each patient by a radiologist using
institutional software package called Voligator. Depending on the particular patient, the atelectasis occupied from
4 to 27 axial slices. A narrow manually-adjusted intensity window was used during the outlining atelectasis and
tumour borders as it helps to slightly accentuate the intensity difference between the two region types. Generally, the
tumours were located in the lung more centrally (ie, closer to the mediastinum) while the atelectasis often was located
more peripherally. It was also noticed that the tumour in-plane contours tend to have more bulging shape while the
atelectasis regions were rather bounded by ”piecewise-straight” lines. Finally, it should be pointed out that the manual
segmentation was performed intuitively, solely based on an extensive clinical experience. Nevertheless, in some cases
the correct delineation of the ”true” boundaries may not be guarantied due to the above-mentioned reasons.

3 Methods

The approach followed in this study was to sub-sample image voxels from two types of lung regions at random and to
evaluate the significance of the intensity differences as a function of the sample size. This was done for each patient
separately. The voxels were sampled without replacement. The training and test sets do not overlap. In order to ease
the interpretability of the results, the sample sizes were selected so that they correspond to the number of voxels in
square-shaped image slice patches with the side size of 3, 4, ..., 10, 15, 20, and 30 voxels that is 9, 16, ..., 100, 225,
400, and 900 sample voxels respectively. This does not means that the analysis methodology we developing is 2D-
oriented, though. All statistical and pattern recognition analyses described in this work were performed using R, a
language and environment for statistical computing which is available for free [5]. The atelectasis and tumour classes
were compared by various ways to eliminate possible bias of one singe method. First, the significance of intensity
differences between the two classes was assessed statistically using a two-tailed unpaired t-test with the significance
level of t-statistics set to p < 0.05. The resultant t-values, which depend on the degree of freedom (sample size) were
converted into z−scores to enable direct comparison of statistical significance obtained in different experiments as well
as to calculate the mean significance scores over all 40 patients correctly. For each patient and each sample size the
procedure consisting of random voxel sub-sampling and performing t-test was replicated 100 times in order to obtain
reliable results.

At the second stage, the atelectasis and tumour voxel samples (ie, the vectors of voxels sorted in descending order
and treated as features) were clustered using Hierarchical Clustering [6], Support Vector Machines [7], and Random
Forests [8] methods. For each sample size and each patient the classifiers were trained on a training sets containing
10 atelectasis and 10 tumour samples and tested on the datasets of the same size. Training and test sets were sampled
independently. There was no voxels included in both training and test sets simultaneously. The three classifiers were
run on exactly the same data. Each test was replicated 100 times in order to obtain statistically representative estimates
of the classification accuracy. The classification accuracy was corrected for agreement by chance using the kappa
statistic as implemented in classAgreement function provided with R. For two classes this particularly means that
the minimal accuracy value was 0 but not 50%. The corrected classification accuracy was used as a measure of the
dissimilarity of two lung regions as well as the basic value for estimating possible image segmentation accuracy. The
total number of performed classification tests was: 40 patients × 11 sample sizes × 3 methods × 100 replications =
132000.

Finally, the Cailliez′s version [9] of Multidimensional Scaling (MDS) method [10] was utilized for reducing the dimen-
sionality of the space of voxel sample vectors down to two dimensions in order to produce conventional voxel sample
scatterplots. Note that the multidimensional scaling provides an approximate solution, which is mostly suitable for
visual examination of overlapping object classes. The total computational time (including all overheads) for 132000
classification tests and 40 × 11 = 440 runs of the multidimensional scaling algorithm was 109 minutes on a personal
computer equipped with 1.86 GHz Intel Core 2 Duo processor.

4 Results

Results of statistical assessment of the significance of intensity differences between the atelectasis and tumour regions
of lung CT scans of 40 patients are reported in Fig. 2. As it can be seen from the figure, the fraction of significantly
different voxel samples and the mean significance scores varied considerably depending on the patient. For instance,
for one patient the percentage of significantly different samples exceeds notable 60% already on 9 voxels and achieves
100% with the sample size as little as 36 voxels (see the left panel of Fig. 2) while in other it starts close to zero
with 9 voxels and finishes at about 10% only. Similarly, for some patients the mean z−score achieves the significance
threshold z > 1.96 which is equivalent to p < 0.05 on the sample size of 9–25 voxels (see the right panel of Fig. 2)
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while for others these values remain insignificantly low even on reasonably large samples consisting of 400-900 voxels.

On the contrary, the voxel sample classification results demonstrate much more consistent behaviour (see Fig. 3). As
it can be revealed from the figure, a very useful property of the classification approach for separating the atelectasis
and tumour regions is that the results are converged to 90–100% of the classification accuracy for relatively large
samples in each patient. As for the comparative efficiency of the three classification methods, it is easy to see from
Fig. 3 that the Hierarchical Clustering algorithm outperforms both SVM and Random Forests for each voxel sample
size. Moreover, in case of Hierarchical Clustering, the classification accuracy corrected for the agreement by chance
starts from the value above 50% almost for each patient and achieves 90% on the sample size of 225 voxels for all
40 patients except for 2 outliers. The mean and standard deviation values of the classification accuracy computed
over 40 patients (see the bottom right plot of Fig. 3) make the superiority of Hierarchical Clustering method evident
and renders other two as almost identical in the voxel sample classification task. Considering that the one possible
segmentation technique could be based on a direct voxel sample classification using sliding window of suitable size,
the mean accuracy threshold should be set to a reasonably high value, say 95%. If so, the minimal sample size should
be set to approximately 100-200 voxels. This corresponds to the window size of about 12×12 voxels (ie, the half
window size is 4.1 mm) for 2D and less than 6×6×6 voxels (2.0 mm) for 3D case.

Fig. 4 shows an example of separation of voxel samples in multidimensional space. It should be stressed that this figure
illustrates one single case out of 440 and thus may not be as conclusive as the results represented in Fig.3.

5 Conclusions

In this work we have documented results of patient-wise assessment of CT image intensity differences between the lung
atelectasis and malignant tumour regions. Our results suggest that it is unlikely that the use of statistical significance
scores for separating lung atelectasis and tumour regions would produce good quality discrimination for all the patients.
However, the recent clustering algorithms demonstrate some encouraging classification accuracy on the CT intensity
samples consisting of few hundred voxels. The Hierarchical Clustering method was found to be better suited for
highlighting the border between the two types of regions in a gradient-like way [4] comparing to SVM and Random
Forests classifiers. This is in agreement with other studies where classes overlap in feature space substantially (eg,
[11], [4]). The voxel sample classification accuracy potentially allows to reliably discriminate atelectasis and tumour
regions using relatively small sliding window of 12×12 voxels (ie, the half window size is 4.1 mm) in 2D and no more
than 6×6×6 voxels (2.0 mm) in 3D case.
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Figure 1. Example slice of typical lung CT image with atelectasis (ATL) and tumour (TUM) regions (left panel) and
plots of mean intensity values of the atelectasis and tumour regions for 40 patients (right panel).

Figure 2. Significance of the intensity differences of lung atelectasis and tumour voxel samples for 40 patients (curves)
as a function of the voxel sample size. Left panel: percentage of voxel samples for which the intensity difference is
statistically significant at p < 0.05. Right panel: the mean value of significance score z. In both occasions image
voxels were sampled from atelectasis and tumour regions at random and each measurement is replicated 100 times.
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Figure 3. Dependence of the classification accuracy on sample size of lung atelectasis and tumour voxels for 40
patients (curves) when using Hierarchical Clustering (top left plot), Support Vector Machines (top right plot), and
Random Forests (bottom left plot) clustering methods. Each test was replicated 100 times for the reliability of results.
The mean and standard deviation accuracy computed over 40 patients is given on the bottom right panel.

Figure 4. Example of separation of 120 image voxel vectors (dots) sampled from the lung atelectasis and tumour
regions of a patient with the sample size of 9 (left panel) and 400 (right panel) voxels. In both cases the sample points
spanning the N-dimensional space (N is equal to 9 and 400 respectively) are projected to a plane with two conditional
dimensions using the Multidimensional Scaling method. The scatterplots represent two replications taken at random.
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