РНПЦ онкологии и медрадиологии им. Н.Н. Александрова Белорусская медицинская академия последипломного образования

Критерии качества КТ-исследований и оптимизация доз облучения

к.м.н. Хоружик С.А.

Учебный семинар «Критерии качества в лучевой диагностике», Минск, 23-24 марта 2010г.

Составляющие качества КТисследований

- 1. Техническое состояние оборудования
- 2. Оптимальное качество КТ-изображений
- 3. Минимально возможная доза облучения
- 4. Знания и опыт специалиста

Инструкции по применению МЗ РБ

- 1. Чиж Г.В., Полойко Ю.Ф. Контроль доз облучения пациентов при рентгенодиагностических исследованиях (11.09.2001г.)
- 2. Тарутин И.Г., Хоружик С.А., Чиж Г.В. Протокол контроля качества работы рентгеновских компьютерных томографов (26.06.2006г.)
- 3. Хоружик С.А., Чиж Г.В. Измерение, контроль, снижение доз облучения пациентов при компьютернотомографических исследованиях (11.06.2009г.)

Полные тексты: http://nld.by/ctdose

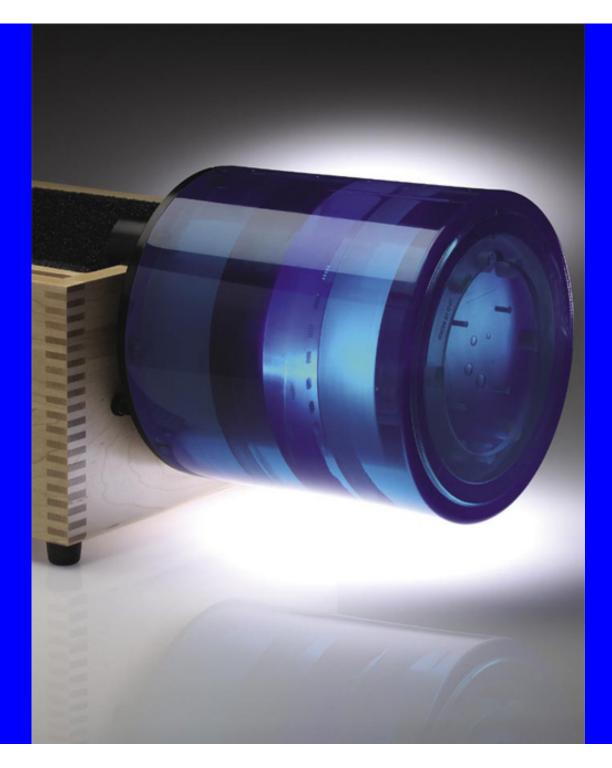
МИПИСТЕРСТВО ДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ПРОТОКОЛ КОНТРОЛЯ КАЧЕСТВА РАБОТЫ
РЕНТГЕНОВСКИХ КОМПЬЮТЕРНЫХ ТОМОГРАФОВ

Ниструкция по применению

Минек 2006

КОНТРОЛЬ КАЧЕСТВА В ЛУЧЕВОЙ ТЕРАПИИ И ЛУЧЕВОЙ ДИАГНОСТИКЕ

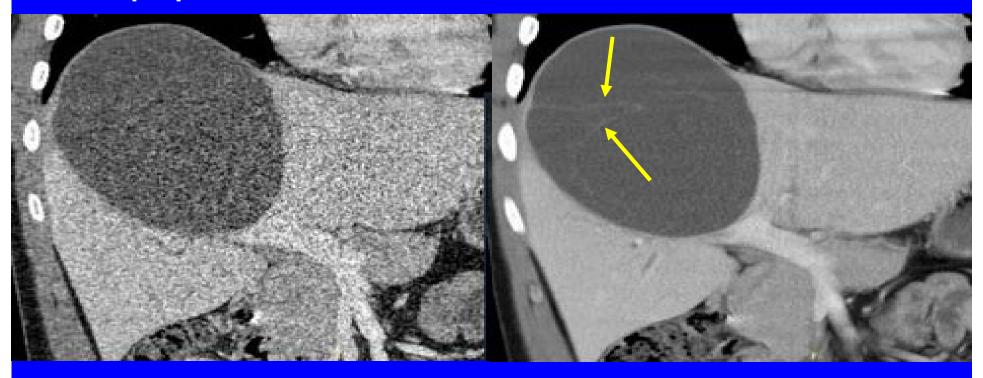

Сборник нормативных документов

Качество КТ-изображений

Это соответствие КТ-изображений установленным требованиям, благодаря чему обеспечивается получение диагностической информации в необходимом объеме

Показатели качества КТизображений

- Уровень шума
- Однородность, в т. ч. отсутствие артефактов
- Пространственная разрешающая способность
- Контрастная разрешающая способность

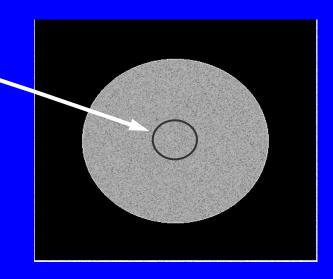


Фантом Catphan
для проведения
тестов контроля
качества КТ
(кроме дозиметрии)

Стоимость ≈ 8000 \$

Шум КТ-изображений

Это изменение плотности на КТизображении, которое не несет полезной информации

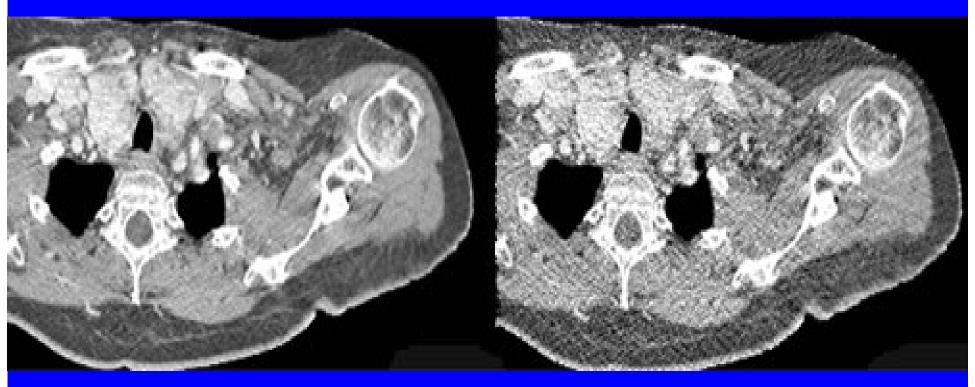


Шум виден как зернистость

Измерение

Шум равен стандартному отклонению КТ-чисел в выделенной зоне интереса

Плотность: 0±4 ед. X. Шум=4 ед. X.

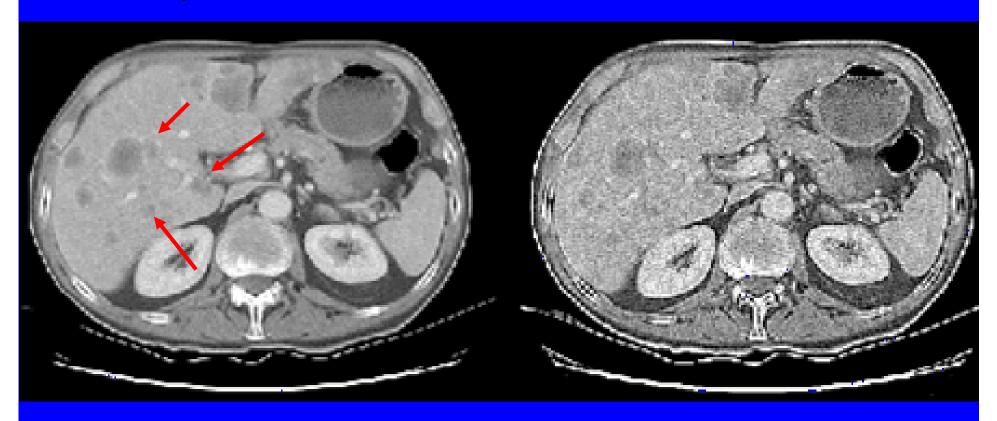


Требования к уровню шума (водный фантом):

- •B диагностике не > 10 ед. X.
- •Для планирования лучевой терапии не > 15 ед. Х.

При увеличении мАс:

- •качество КТ-изображений улучшается за счет уменьшения шума
- •Пропорционально увеличивается доза облучения

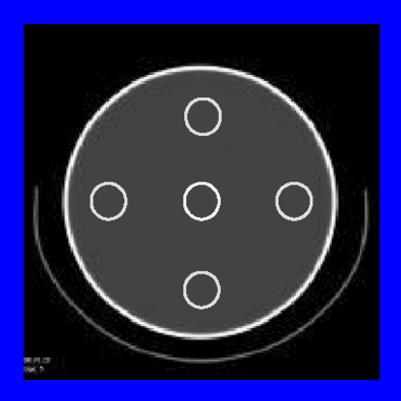


160 MAC

40 MAC

Влияние алгоритма реконструкции (кернеля)

Стандартный кернель Шум=17 ед. X. «Острый» кернель Шум=70 ед. Х.


Ухудшается визуализация очагов в печени

Однородность

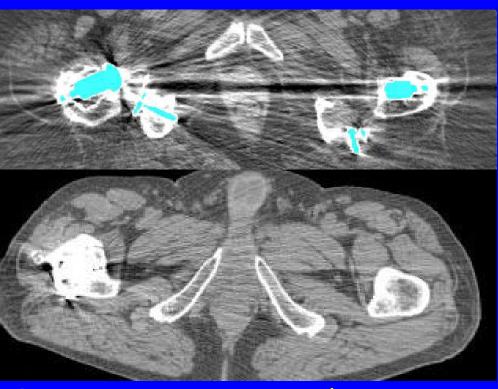
Под однородностью понимается равенство измеренных значений КТ-чисел в различных участках однородного объекта

Ведущая причина неоднородности КТ-изображений – артефакты

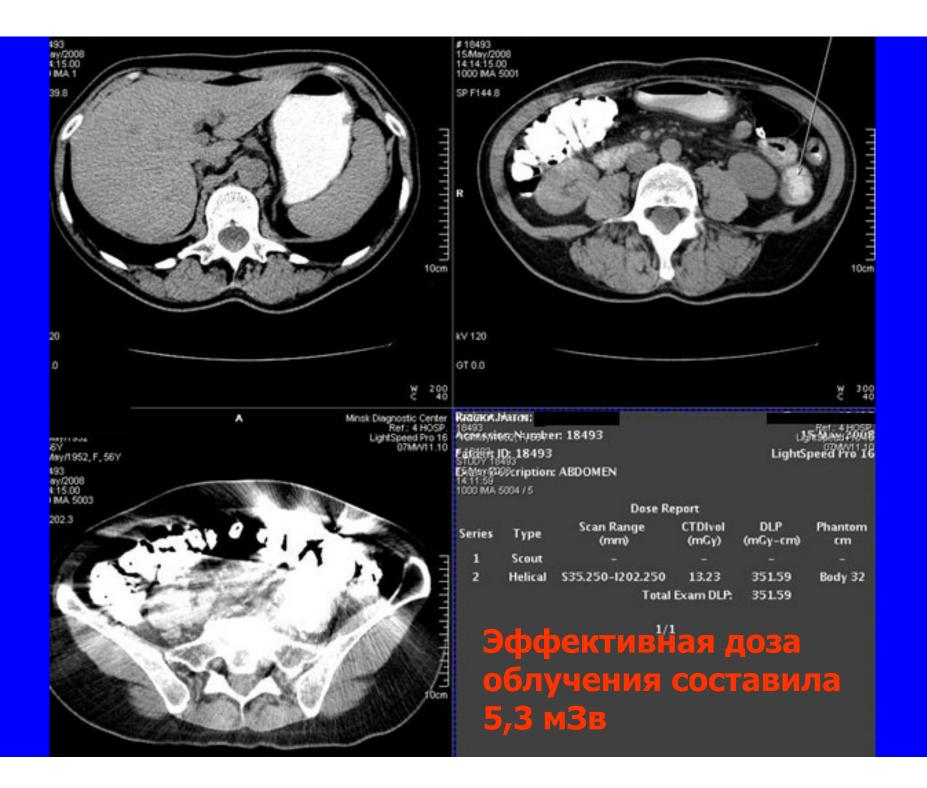
Измерение

Разница между КТ-числами в центре и каждой из четырех периферических зон интереса не должна превышать 4 ед. X.

Артефакты

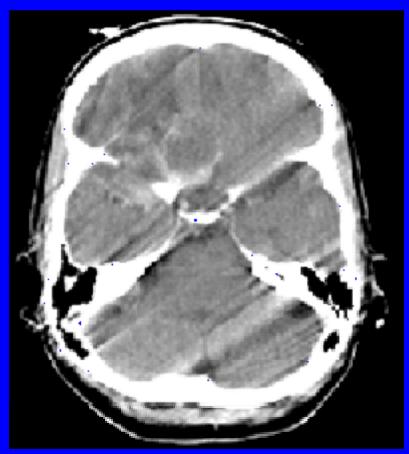

Это элементы КТ-изображения, не соответствующие внутренней структуре объекта

- Линейные (полоски)
- Кольцевидные
- Деформации


Артефакты от инородных тел высокой плотности

- •Металл
- •Барий
- •Высоко концентрированные йодсодержащие контр. в-ва

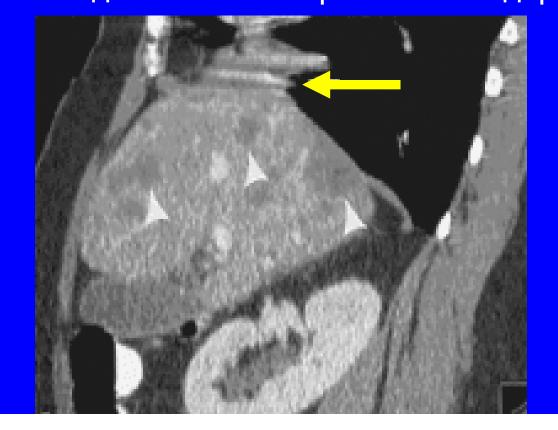
Алгоритм снижения артефактов от металла


Артефакт повышения жесткости лучей

Возникает на границе резкого перепада плотностей: ликвор — кости основания черепа, ребро — печень и т. д.

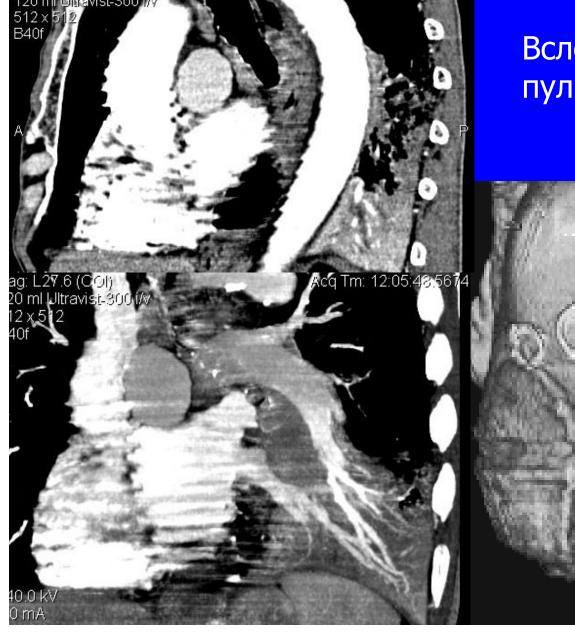
Двигательные артефакты

Разновидности:

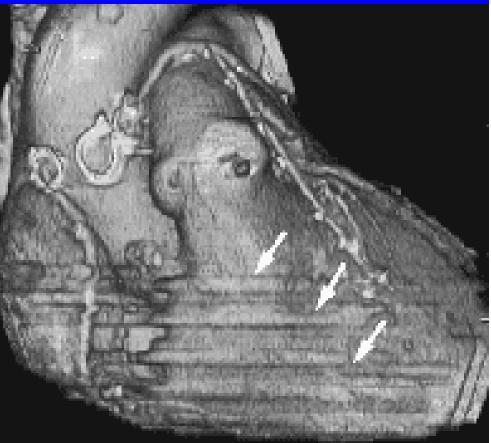

- Артефакт неполной регистрации
- Артефакт приставной лестницы

Артефакт неполной регистрации

•При последовательном сканировании — пропуск очагов вследствие разной глубины вдоха на каждом срезе


•При СКТ и МСКТ – на мультипланарных реконструкциях «смазывание» картинки в начале или конце сканирования вследствие несвоевременной задержки

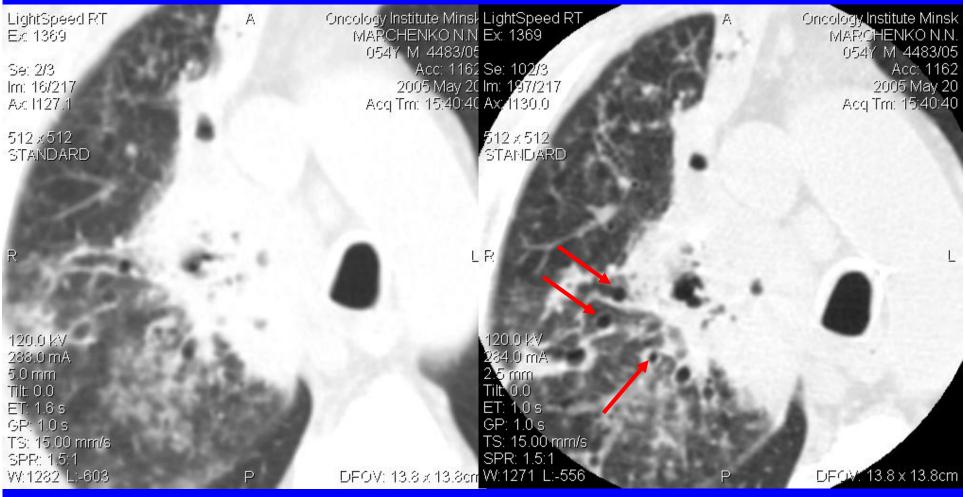
дыхания



Артефакт «приставной лестницы»

Acq Tm: 12:05:48.567492

Вследствие сердечной пульсации

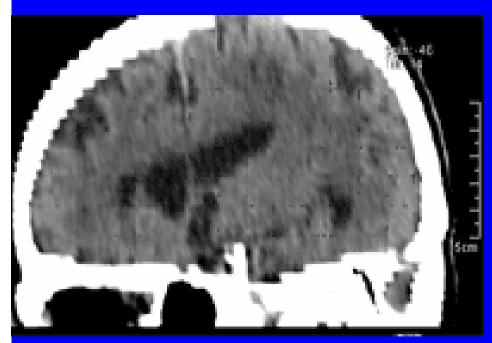

Артефакт частичного объема (артефакт усреднения)

Возникает если размер объекта меньше ½ толщины среза:

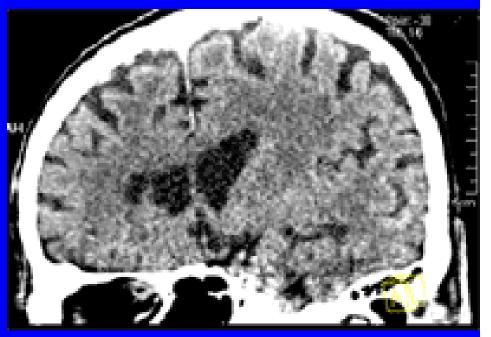
- •Ухудшение визуализации
- •Искажение измерения плотностей

Толщина среза 5 мм

Толщина среза 2,5 мм

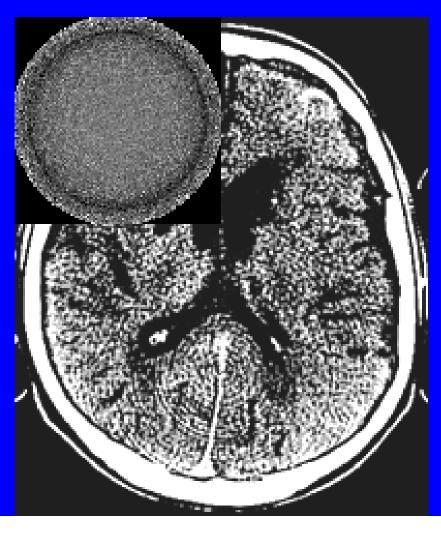


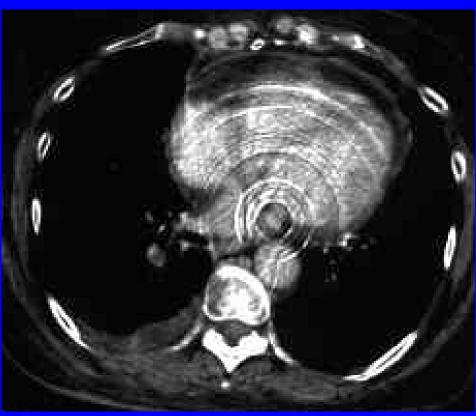
Лучше видны расширенные бронхи


Ступенчатый артефакт

При построении мультипланарных реконструкций из толстых аксиальных срезов

Высота ступеньки равна толщине среза


Толщина аксиальных срезов <mark>5 мм</mark>

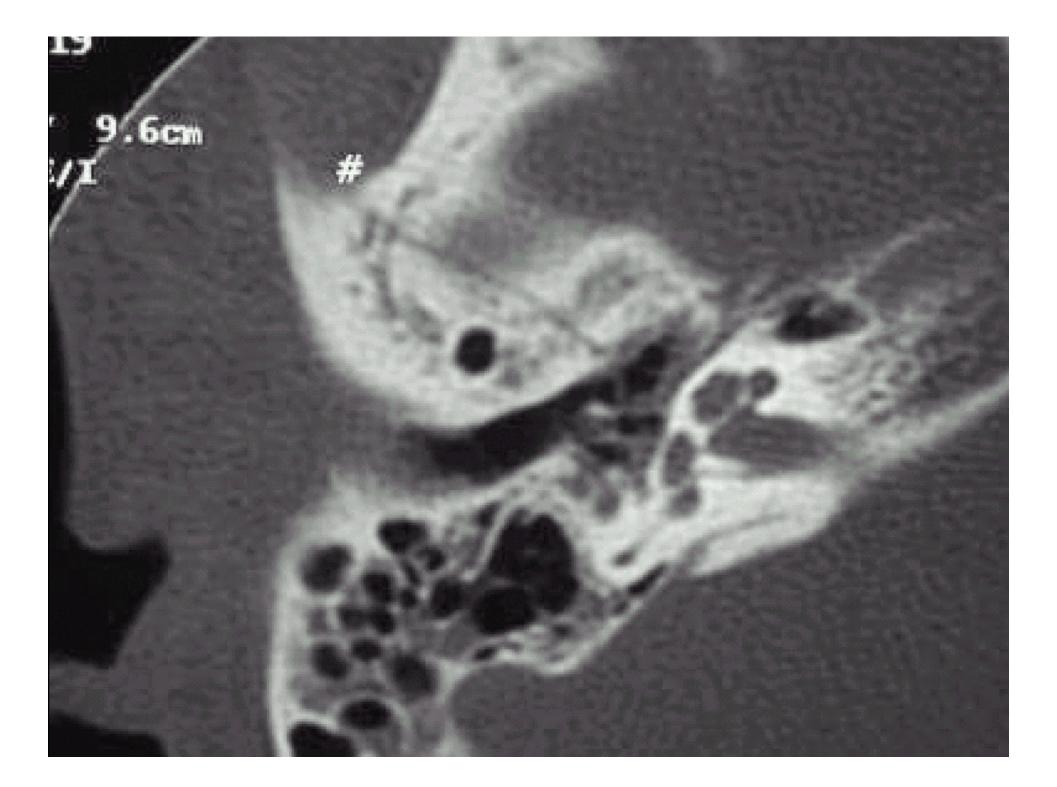


Толщина аксиальных срезов 1,5 мм

Артефакт-кольцо

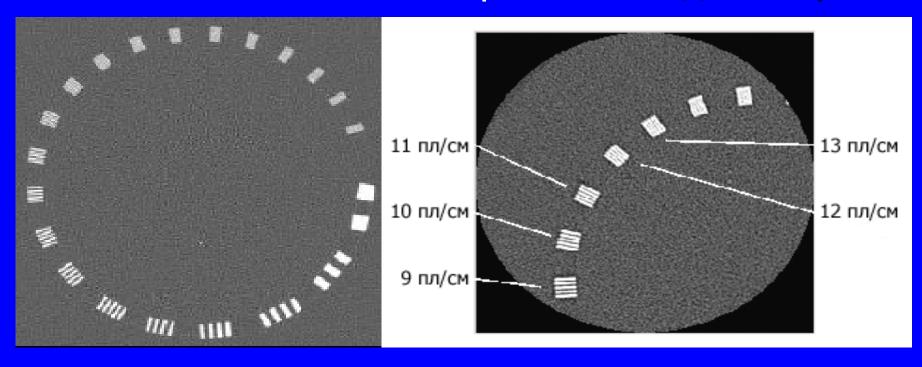
Причина: неправильное функционирование детекторного элемента

Пространственная разрешающая способность


Это способность видеть на КТ-изображениях мелкие детали

Особенно важна при КТ-исследованиях:

- •Костей
- •Паренхимы легких
- •КТ-ангиографии


Способы повышения:

- •Тонкие срезы (изотропическая визуализация)
- •Высокий кернель (острый алгоритм реконструкции)

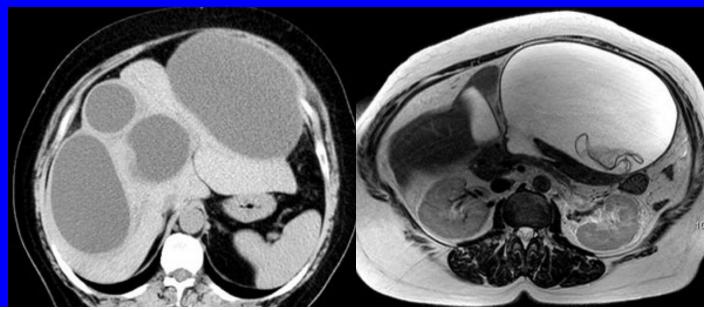
Количественная оценка

- КТ-сканеры 1-3 пл/мм
- Рентгеновская пленка 10-12 пл/мм
- Глаз человека может различить до 8 пл/мм

Контрастная разрешающая способность

Это способность различать объекты с небольшой разницей плотностей

Важна при КТ-исследованиях мягких тканей — около 90% всех КТ-исследований:


- •Брюшная полость
- •Средостение
- •Головной мозг

Способы повышения:

- •Увеличить дозу облучения (мАс)
- •В/в контрастирование

Низкая контрастная разрешающая способность (наряду с облучением) – основной недостаток КТ по сравнению с МРТ

Киста почки 4 мм в диаметре при толщине среза 5 мм практически не видна, измерение плотности недостоверно

После в/в усиления

Вклад КТ в медицинское облучение в РБ

Доля КТ-исследований в рентгенодиагностике:

•2007 г. – 224.000 исследования = 1,8%

•2008 г. – 299.000 исследований = 2,3%

Удельный вес КТ-облучения – 10,8%

Эффективная доза, мЗв

NRPB, 2004

Почему увеличивается доза облучения при КТ?

- •Расширение показаний
- •Многофазные исследования (КТ-ангиография)
- •Новые методики: перфузионная КТ, КТ сердца, КТ-колонография, КТ-урография, биопсия под КТ-контролем
- Прямая зависимость качества КТ-изображений от дозы: больше доза лучше качество

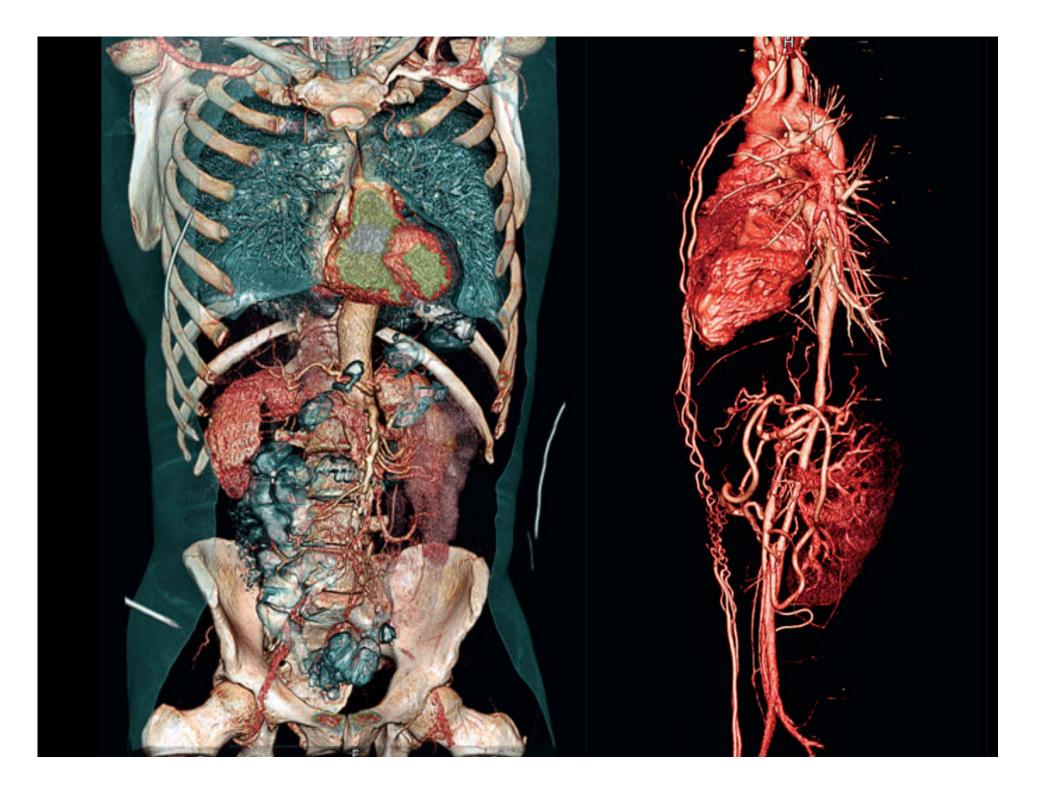
1996: CKT

Толщина среза 5 мм

40 см за 50 сек

Время рот. 1 сек

200 изображений


Толщина среза 0,75 мм

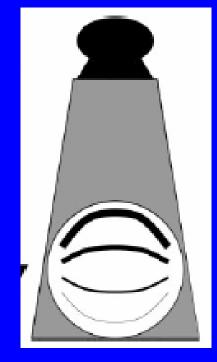
70 см за 29 сек

Время рот. 0,5 сек

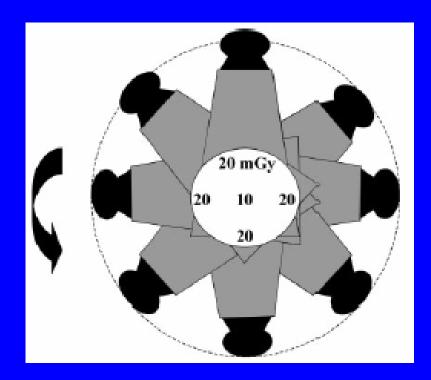
1400 изображений

Выпадение волос у женщины 53 лет с субарахноидальным кровоизлиянием после проведения 4 перфузионных КТ головного мозга и 2 ангиографий на протяжении 15 дней (Imanishi Y., 2005)

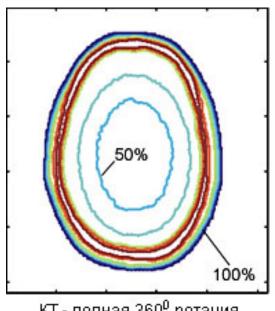
Риск фатального радиационноиндуцированного рака


Tissue or organ	Risk factor (× 10 ⁻² Sv ⁻¹)
Bladder	0.30
Bone marrow (red)	0.50
Bone surfaces	0.05
Breast	0.20
Colon	0.85
Liver	0.15
Lung	0.85
Oesophagus	0.30
Ovary	0.10
Skin	0.02
Stomach	1.10
Thyroid	0.08
Remainder	0.50
Total (rounded)	5.00

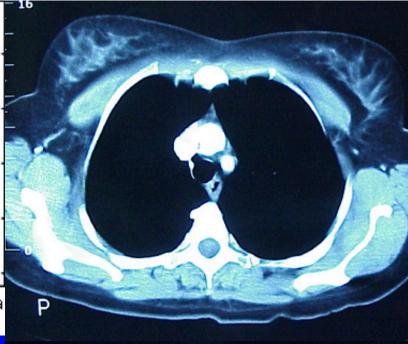
Риск фатального радиационноиндуцированного рака равен 0,005/3в, т.е. 1 на 20.000 людей, облученных в дозе 1 м3в


ICRP Publication 60, 1990

Градиент дозы в КТ-срезе


В РГ доза линейно убывает от передней поверхности объекта к задней, в КТ – от периферии к его центру




Рентгенография

KT

КТ - полная 360⁰ ротация

Задне-пердняя рентгенограмма черепа

Максимальная доза облучения при КТ приходится на поверхностно расположенные ткани – хрусталик, щитовидная и молочная железы

Способы оценки доз облучения при КТ

- 1. Измерения на фантомах наиболее точный метод
- 2. Информация производителя КТ-сканера
- 3. Использование специальных программ расчета доз облучения

Оборудование для практической КТ-дозиметрии

- 1. РММА фантом для головы 16 см в диаметре
- 2. РММА фантом для туловища 32 см в диаметре
- 3. Дозиметр UNIDOS E для измерения CTDI
- 4. Ионизационная камера с длиной зоны измерения 10 см

Комплект для КТ-дозиметрии фирмы PTW Freiburg

Стоимость ≈ 7000 Евро

Дозиметрические параметры при КТ

Параметр, ед. измерен.	Полное название	Что означает?
СТОІ , мГр	Компьютерно- томографический индекс дозы	Поглощенная доза в одном томографическом срезе
DLP, мГр×см	Произведение дозы на длину	Поглощенная доза за все КТ-исследование
E , м3в	Эффективная доза	Сумма взвешенных поглощенных доз во всех органах и тканях человека

КТ-дозиметрия в РБ

- •Проведена в ноябре 2007-феврале 2008 гг.
- •7 медучреждений гг. Минска, Витебска, Гомеля
- •8 КТ-сканеров

№ п/п	Производи- тель	Название	Тип	Год установки
Сканер 1	Siemens	Somatom Volume Zoom	МСКТ-4	2002
Сканер 2	GE	Light Speed RT	МСКТ-4	2005
Сканер 3	Siemens	Somatom Emotion 6	МСКТ-6	2005
Сканер 4	Philips	Tomoscan SR 4000	СКТ	1996
Сканер 5	GE	Hi Speed CT/e	СКТ	2002
Сканер 6	GE	Tomoscan CX/Q	ПКТ	1990
Сканер 7	Siemens	Somatom AR-C	ПКТ	1995
Сканер 8	GE	Hi Speed CT/e	СКТ	2002

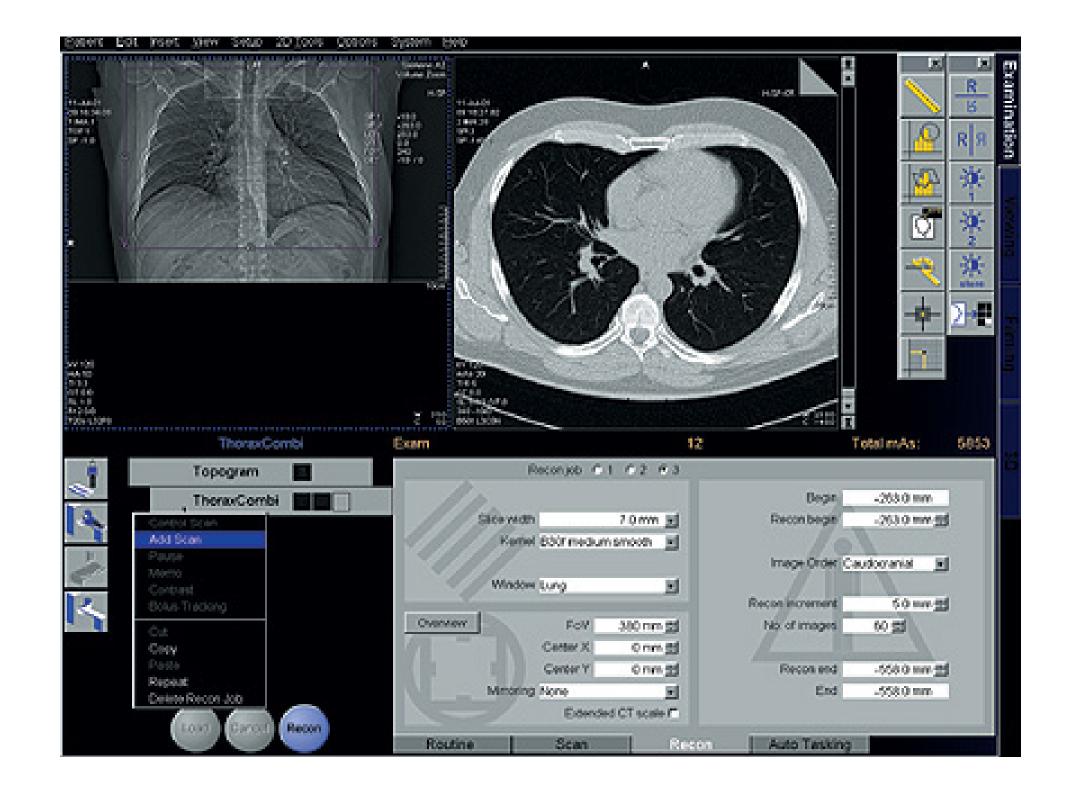
№ п/п	Параметр	Головной мозг	Шея	Грудная полость	Брюшная полость	Tas
11/11	Параметры протокола ис			<u>l</u>	110310 C 18	
1.	Название протокола	Brain- standart	Larynx	Mediastinum	Abdomen- general	Pelvis- general
2.	Технология сканирования	Послед.	Послед.	Послед.	Послед.	Послед.
3.	Напряжение, кВ	12	0	120	10	20
4.	Сила тока, мА	91	0	110	10	10
5.	Время ротации, сек	4,	5	2,8	4	,5
б.	мАс	40	5	308	49	95
7.	Коллимация, мм	5		10	10	
8.	Сдвиг стола/рот., мм	5		10	10	
9.	Длина зоны сканирования, см	1:	5	30	25	20
10.	Коэф, пересчета в Е	0,0023	0,0054	0,017	0,015	0,019
		Результаты г	вмерений и	расчетов		
Изм	ерения	1		2	3	3
1.	Показание в центре	27	,2	12,3	19,4	
2.	CTDIc, мГр	54	,4	12,3	19,4	
3.	Показание на 0°	32	,3	30,8	34,0	
4.	Показание на 90°	31	31,1		42,1	
5.	Показание на 180°	27,0		27,3	37,8	
б.	Показание на 270°	29,2		33,8	34,9	
7.	СТDIр, мГр	64	,б	33,8	42	.,1
8.	СТDIw, мГр	61,2		26,6	34	,5
9.	DLP, мГрхсм	91	8	798	863,3	690
10.	Е, м3в	2,1	5,0	13,6	13,0	13,1

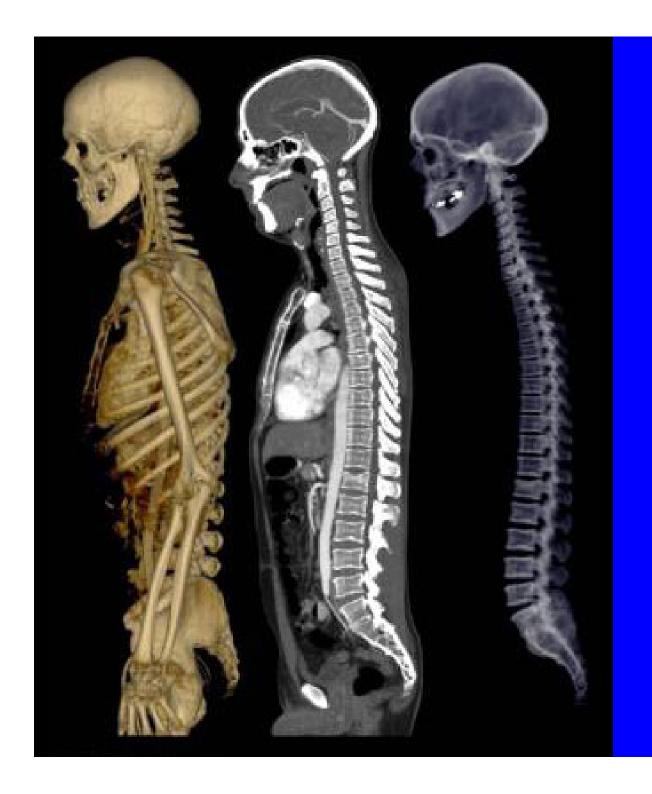
КТ-дозы в РБ и за рубежом

Зона	Средняя эффективные доза, мЗв		
исследования	РБ Великобри-		Греция, 2003 г.
		тания, 2005 г.	2005 1.
Головной мозг	1, 4	1,5	1,6
Грудная	6,9	5,8	6,8
полость			
Брюшная	7,0	5,3	7,0
полость			
Таз	8,8	7,1	6,4

Разброс доз облучения на 8 сканерах

Зона	Эффективная доза, мЗв		Отношение
исследования	Минимум	Максимум	
Головной мозг	0,9	2	2,2
Шея	1,5	4,1	2,7
Грудная полость	2,9	9,1	3,1
Брюшная полость	3,1	9,7	3,1
Таз	4,3	15,6	3,6


Параметры КТ-исследования, влияющие на дозу облучения


• мАс и кВ

• Время ротации

• Питч

• Коллимация среза

1,4 мЗв

2,6 мЗв

6,9 мЗв

<mark>7 м</mark>3в

8,8 мЗв

= 26,7 M3B

Диагностические контрольные уровни

ДКУ (diagnostic reference levels, DRL) – рекомендуемые уровни дозы облучения при основных радиологических исследованиях пациентов стандартного роста и массы тела или стандартных фантомов

Не должны превышаться при нормальном функционировании радиологического оборудования

Случаи превышения должны индивидуально рассматриваться для принятия необходимых мер по снижению доз облучения

Как устанавливаются ДКУ?

На уровне 75-го процентиля, т.е. 75% измеренных значений доз облучения находятся ниже ДКУ, а 25% — выше

Значения ДКУ в РБ

Установлены инструкцией по применению «Измерение, контроль, снижение доз облучения пациентов при компьютерно-томографических исследованиях», МЗ РБ, регистрационный № 055-0609 от 11.06.2009 г.

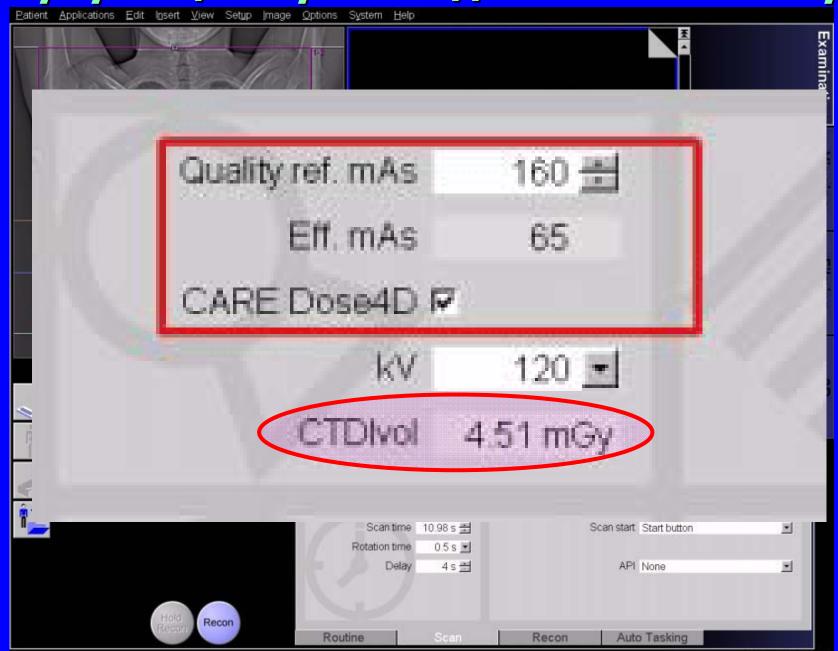
Область	Дозиметрический параметр		
исследования	$\mathit{CTDI}_{\mathit{vol}}$, м Γ р	<i>DLP</i> , мГр∙см	
Головной мозг	60	730	
Шея	55	640	
Грудная полость	20	500	
Брюшная полость	25	600	
Таз	25	490	

Компьютерные программы расчета доз

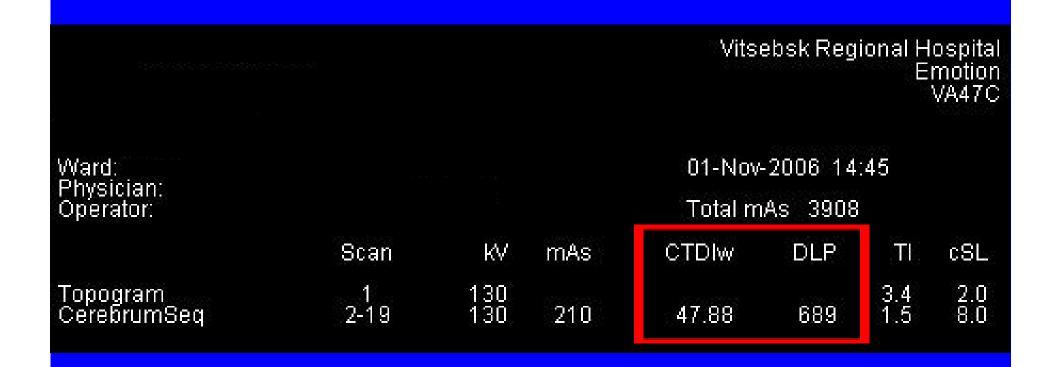
ImPACT CT Patient Dosimetry Calculator

Version 0.99x 20/01/06

Scanner Mod			
Manufacture	Seners		7
Scanner:	Semens	Volume Z	oom, Access
kV:	120		
Scan Regior	Head		▼
Data Set	MCSET12 Update Data Set		
Current Data			
Scan range			
Start Position	79,5	cm	Get From Phantom
End Position	94	cm	Diagram
Patient Sex:	f	100	

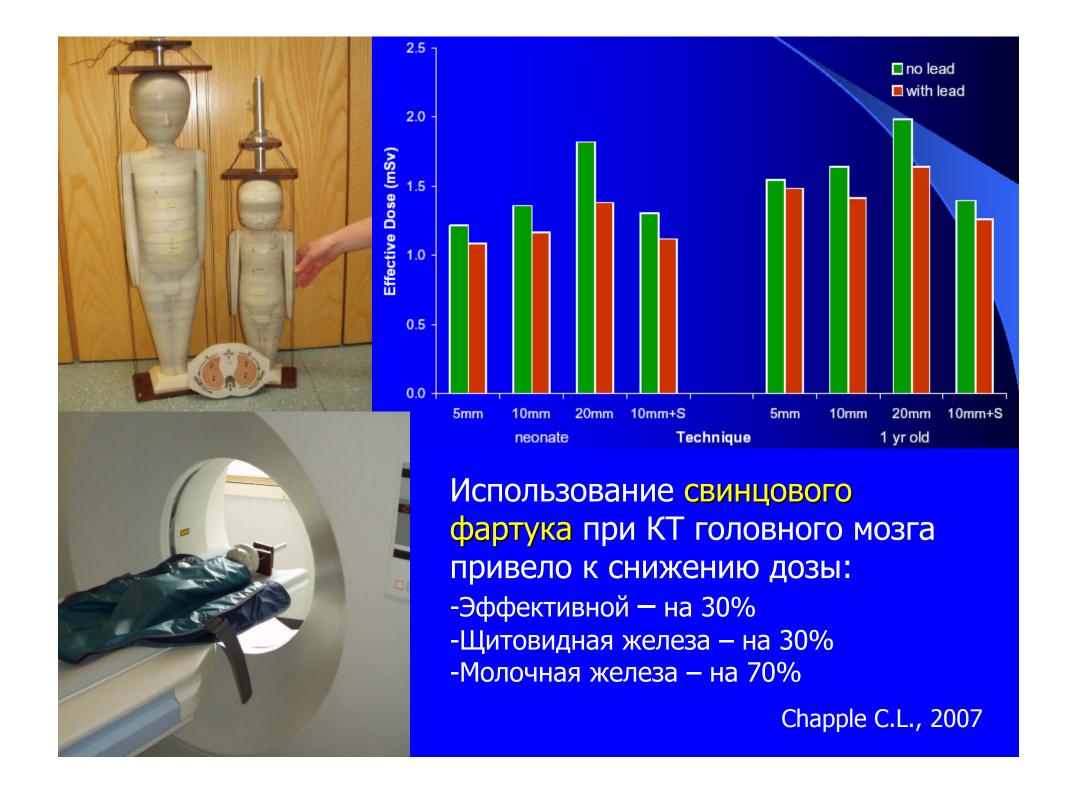

1	Acquisition Parameters:				
3	Tube current	350	mA		
	Rotation time	1	s		
	mAs / Rotation	350	mAs		
į	Collimation	10	▼ mm		
Ì	Slice Width		mm		
į	Pitch	1			
3	Rel. CTDI Look u	p 1,00	at selected collimati		
1	CTDI (air) Look u	25,0	mGy/100mAs		
ģ	CTDI (soft tissue)	26,7	mGy/100mAs		
	nCTDI _w Look u	19,8	mGy/100mAs		

Organ	Wτ	H _T	w _T .H _T	
Gonads	0,2	0	0	
Bone Marrow (red)	0,12	3,6	0,43	
Colon	0,12	0,00012	2E-05	
Lung	0,12	0,14	0,016	
Stomach	0,12	0,0051	0,0006	
Bladder	0,05	9,9E-06	5E-07	
Breast	0,05	0,039	0,0019	
Liver	0,05	0,011	0,0006	
Oesophagus (Thymus)	0,05	0,14	0,0069	
Thyroid	0,05	2,8	0,14	
Skin	0,01	3,6	0,036	
Bone Surface	0,01	14	0,14	
Brain	0,025	54	1,3	
Remainder 2	0,025	1,2	0,03	
Total E	ffective Do	se (mSv)	2,2	


Remainder Organs	H _T
Adrenals	0,013
Brain	54
Upper Large Intestine	0,0005
Small Intestine	0,0006
Kidney	0,0036
Pancreas	0,0094
Spleen	0,01
Thymus	0,14
Uterus	0
Muscle	1.3
CTDI _w (mGy)	69,2
CDTI _{vol} (mGy)	69,2
DLP (mGy.cm)	1003

Scan Description / Comments		

Информация производителя КТ-сканера


Дозовый отчет сканера

Эффективная доза = $689 \times 0,0023 = 1,6$ мЗв

Пути снижения облучения при КТ

- 1. Исследование только по показаниям
- 2. Полная информация о ранее выполненных КТ-исследованиях
- 3. Не расширять неоправданно зону исследования
- 4. Использование защитных фартуков
- 5. Адаптация параметров сканирования:
 - уменьшить мАс, кВ
 - увеличить питч
 - использовать технические приемы автоматического снижения дозы

Модуляция силы тока

- •Z-модуляция (продольная): по топограмме в зависимости от коэффициента ослабления
- •XY-модуляция (угловая): в реальном времени в зависимости от коэффициента ослабления излучения тканями за предыдущие 180°

Модуляция силы тока

Обычное сканирование

Модуляция силы тока

Снижение дозы в области плечевого пояса на 53%, на всем исследовании – на 49%

