ИНСТРУКЦИЯ ПО КТ-ДОЗИМЕТРИИ

Составил:

Хоружик Сергей Анатольевич, врач лучевой диагностики, к.м.н., доцент рентгеновское отделение,

ГУ «Республиканский научно-практический центр онкологии и медицинской радиологии им. Н.Н. Александрова», аг. Лесной, 223040 Минский район, Республика Беларусь.

Интернет: http://nld.by/personal

17.08.2008, обновлено 18.01.2029, обновлено 21.03.2009

Содержание:

- А. Дозиметрические параметры при КТ
- Б. Оборудование для КТ-дозиметрии
- В. Порядок КТ-дозиметрии:
 - 1. Позиционирование фантома
 - 2. Установка ионизационной камеры
 - 3. Измерение CTDIc (CTDI в центре фантома)
 - 4. Измерение CTDIp (CTDI на периферии фантома)
 - 5. Pacчет CTDIw (взвешенное CTDI)
 - 6. Pacчет CTDIvol (объемный CTDI)
 - 7. Расчет DLP
 - 8. Расчет эффективной дозы облучения при обследовании взрослых
 - 9. Заполнение протокола дозиметрии
 - 10. Расчет эффективной дозы облучения при обследовании детей

Г. Литература.

Данная инструкция является практическим руководством для проведения КТ-дозиметрии. См. также инструкцию по применению «Протокол контроля качества работы рентгеновских компьютерных томографов» (авторы: Тарутин И.Г., Хоружик С.А., Чиж Г.В; утверждена МЗ РБ 26.06.2006г., регистрационный № 192-1205), http://nld.by/personal/downloads/by ct quality control.pdf [1].

А. Дозиметрические параметры при КТ.

CTDI (Computed Tomography Dose Index, компьютерно-томографический индекс дозы) – это интеграл профиля дозы за один оборот рентгеновской трубки, нормализованный к ширине рентгеновского луча. На сканерах с последовательной и спиральной технологиями

сканирования ширина рентгеновского луча равна коллимации среза, на многосрезовых сканерах – коллимации среза, умноженной на количество каналов сбора информации (см. формулу (1)). СТОІ служит мерой поглощенной дозы облучения за один оборот рентгеновской трубки. Единица измерения – мГр. Является непосредственно измеряемым дозиметрическим параметром. Величина СТОІ определяется техническими особенностями сканера и параметрами протокола КТ-исследования.

Согласно инструкции по применению «Протокол контроля качества работы рентгеновских компьютерных томографов» [1] СТDI подлежит измерению один раз в год с занесением полученных значений в протокол ежегодного обследования КТ-сканера. Измерение СТDI считается достаточным для ежегодного контроля дозиметрических параметров КТ-сканера.

DLP (Dose Length Product, произведение дозы на длину) — поглощенная доза за все КТ-исследование с учетом протяженности области сканирования и количества повторных сканирований (например, исследование до и после внутривенного введения контрастного препарата, исследование у одного пациента нескольких областей, например головного мозга и грудной полости). Единица измерения — мГрхсм. Является расчетным значением от СТDI.

Оба параметра (СТDI и DLP) используются в Европейском союзе для установления диагностических референтных уровней (diagnostic reference levels) доз облучения для основных видов КТ-исследований. Например, при КТ грудной полости СТDIw составляет 30 мГр, DLP - 650 мГрхсм [2]. Систематическое превышение диагностических референтных уровней требует принятия мер по снижению доз облучения пациентов (пересмотр параметров протокола сканирования, углубленные тесты контроля качества, техническое обслуживание сканера).

Е (эффективная доза) — сумма взвешенных поглощенных доз во всех органах и тканях человека. Рассчитывается с учетом взвешивающих коэффициентов для видов излучений, характеризующих их проникающую способность (для рентгеновских лучей этот коэффициент равен 1), и взвешивающих коэффициентов, характеризующих радиочувствительность конкретных тканей и органов. Служит мерой биологического риска облучения при КТ-исследовании и позволяет прямое сравнение с эффективной дозой при других видах рентгенодиагностических исследований. Единица измерения — мЗв. Рассчитывается из DLP с использованием коэффициентов пересчета.

Параметр	Расшифровка	Что означает?	Единица измерения	Для чего предназначен?	
CTDI	Компьютернотомографический индекс дозы	Поглощенная доза облучения (нормализованная к ширине рентгеновского луча)	мГр	Контроль качества компьютерной томографии; оптимизация доз облучения при КТ (диагностические референтные уровни)	
DLP	Произведение дозы на длину	Поглощенная доза за все КТ-исследование	мГрхсм	Оптимизация доз облучения при КТ (диагностические референтные уровни)	
E	Эффективная доза	Мера биологического риска облучения	мЗв	Оценка биологического риска облучения; сравнение с дозой облучения при других рентгенисследованиях	

Б. Оборудование для КТ-дозиметрии.

- РММА (пластик полиметилметакрилат) фантом для головы 16см в диаметре,
- РММА фантом для туловища 32см в диаметре,
- Дозиметр для измерения CTDI,
- Ионизационная камера с длиной зоны измерения (активная зона, интегральная длина) 10 см.

Фантомы для головы и туловища могут быть в двух вариантах: два отдельных цилиндра, либо как цилиндр-вставка, т. е. фантом диаметром 16 см вставляется в фантом диаметром 32 см.

Нами используются фантомы, ионизационная камера и дозиметр UNIDOS E фирмы PTW Freiburg (Германия). Стоимость комплекта составляет около 7000 Евро.

В. Порядок КТ-дозиметрии.

Измерение доз облучения при КТ могут осуществлять с двумя целями:

- контроль качества компьютерной томографии для установления стабильности дозы во времени. Для этого достаточно измерить CTDI и не обязательно использовать параметры протоколов клинических КТ-исследований. Но эти параметры должны быть одинаковыми при повторных измерениях. В соответствии с инструкцией [1] дозиметрия с целью контроля качества КТ должна проводиться 1 раз в год. Допускается отклонение CTDI в пределах ±20% от впервые измеренного значения (например, при приемке сканера в эксплуатацию);
- оценки доз облучения пациентов. Для этого необходимо использовать параметры протоколов клинических КТ-исследований, т.е. протоколов, используемых в конкретном учреждении в процессе ежедневного сканирования пациентов. Измеряют СТDI, после чего рассчитывают DLP и эффективную дозу.

Измерение доз облучения при КТ-исследованиях головного мозга и шеи производится с использованием фантома для головы. Если используется фантом типа цилиндра-вставки, то наружный цилиндр (32см в диаметре) снимается. Измерение доз облучения при КТ-исследованиях грудной, брюшной полости и таза производится с использованием фантома для туловища (32см в диаметре). Если используется фантом типа цилиндра-вставки, то фантом для головы должен оставаться внутри фантома для туловища.

1. Позиционирование фантома.

Поместить фантом для головы (или туловища) в центр апертуры гентри. Для этого фантом позиционируется на столе пациента по трем взаимно перпендикулярным лазерам сканера, используя метки на корпусе фантома: первый лазер — по метке на боковой поверхности фантома (устанавливаем положение стола по высоте), второй лазер — по метке на верхней поверхности фантома (устанавливаем фантом по продольной оси сканирования), третий лазер — в плоскости сканирования (т. е. аксиальной плоскости среза).

2. Установка ионизационной камеры.

Установить ионизационную камеру в центральное отверстие фантома, все остальные отверстия заполнить имеющимися в комплекте вставками. Центр активной зоны (середина длины) ионизационной камеры должен совпадать с плоскостью среза, т. е. с третьим лазером.

3. Измерение CTDIc (CTDI в центре фантома).

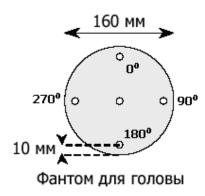
Выбрать протокол КТ-исследования, для которого необходимо измерить дозу облучения (или установить параметры исследования вручную). Сканирование должно производиться без наклона гентри в последовательном режиме (влияние питча на поглощенную дозу будет учитываться позднее – при расчете CTDIvol, см. формулу (3)).

Разделить полученное значение на ширину рентгеновского луча, выраженную в см. Получаем значение **CTDIc**, **мГр**:

$$CTDI_c = \frac{1}{N \cdot T} \cdot \int_{-50 \, \text{MM}}^{+50 \, \text{MM}} D(z) dz, \qquad (1)$$

где N- количество каналов сбора информации (в случае последовательной и спиральной технологии сканирования N=1, при многосрезовой технологии сканирования N>1); T- толщина среза, определяемая физической коллимацией (см).

Пример расчета CTDIc (по результатам дозиметрии в РНПЦ онкологии и медрадиологии им. Н.Н. Александрова, Минск):


Проводим исследование грудной полости пациента 50 лет по протоколу Thorax Routine на многосрезовом компьютерном томографе SOMATOM Volume Zoom (Сименс), позволяющем получить до 4 срезов за ротацию.

Параметры протокола: количество каналов сбора информации -4, 300 мA, 140 кB, время ротации 0.5 сек, мAc=300x0.5=150 мAc, коллимация среза 0.25 см, сдвиг стола за полный оборот трубки 1.5 см, длина области сканирования -30 см.

Выполняем одиночный срез в последовательном режиме сканирования. В результате измерений показание дозиметра в центре фантома составило 10,2 мГр. Тогда в соответствии с формулой (1) СТDIc = 10.2/(0.25x4) = 10.2 мГр.

4. Измерение CTDIp (CTDI на периферии фантома).

Последовательно повторить сканирование с теми же параметрами протокола исследования, расположив ионизационную камеру в каждом из четырех периферических отверстий фантома, начиная с верхнего по часовой стрелке.

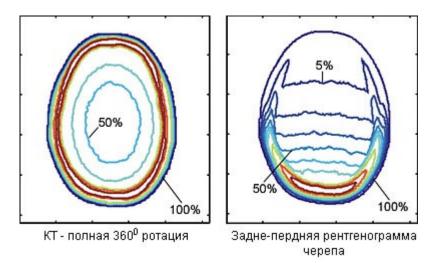
Рассчитать среднее из четырех показаний дозиметра на периферии фантома (на 0° , 90° , 180° и 270°) и разделить его на общую коллимацию рентгеновского луча $N \cdot T$.

Пример расчета CTDIp:

Выполняем одиночный срез в последовательном режиме сканирования с теми же параметрами протокола исследования, что и в примере выше. Показания дозиметра на периферии фантома составили:

 $0^{\circ} - 22.2$

 $90^{\circ} - 22,0,$


 $180^{\circ} - 21,3,$

 $270^{\circ} - 22,2.$

Среднее из четырех показаний на периферии фантома = 22,0. Тогда в соответствии с формулой (1) СТDIp = 22,0/(0,25x4) = 22,0 мГр.

5. Расчет CTDIw (взвешенный CTDI).

CTDIw учитывает неравномерное распределение поглощенной дозы в КТ-срезе: в периферических отделах сканируемого объекта доза выше, чем в центре.

CTDIw рассчитывают по формуле:

$$CTDI_{w} = \frac{1}{3}CTDI_{c} + \frac{2}{3}CTDI_{p}$$
 (2)

В нашем примере:

CTDIw = $1/3x10,2 + 2/3x22 = 18 \text{ m}\Gamma\text{p}$.

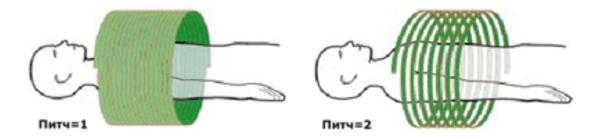
6. Pacчет CTDIvol (объемный CTDI).

CTDIvol учитывает влияние питча на дозу облучения. Рассчитывается по формуле:

$$CTDI_{vol} = \frac{CTDI_{w}}{p}, (3)$$

где p — питч.

Питч p — это отношение сдвига стола пациента Δd за полный оборот трубки к ширине рентгеновского луча $N \cdot T$:


$$p = \frac{\Delta d}{N \cdot T},\tag{4}$$

где N- количество каналов сбора информации; T- толщина среза, определяемая физической коллимацией.

Например, при ширине рентгеновского луча 10 мм и сдвиге стола за оборот трубки 12 мм питч равен 12/10=1,2.

При сканировании в **последовательном режиме** превышение сдвига стола над коллимацией среза означает, что между срезами остаются несканированные участки (в примере выше это 2 мм).

При **спиральном сканировании** с увеличением питча происходит «растяжение» витков спирали, но несканированных участков не возникает, т. к. собирается ОБЪЕМ данных, из которого математическим путем реконструируются недостающие срезы.

При увеличении питча:

- 1) пропорционально увеличивается скорость и сокращается время сканирования;
- 2) в соответствии с уменьшением времени сканирования пропорционально уменьшается доза облучения: при питче 2 доза облучения в 2 раза меньше, чем при питче 1; при питче 0,5 доза облучения в 2 раза больше, чем при питче 1 (при условии неизменности других параметров сканирования);
- 3) качество изображений при последовательном сканировании не меняется (но появляются пропуски сканирования), при спиральной КТ может снизиться.
- 4) на многосрезовых сканерах мАс могут автоматически повышаться для поддержания качества изображений на стабильном уровне. В этом случае с возрастанием питча доза не снижается.

Пример расчета CTDIvol:

В нашем примере CTDIw = 18 мГр, количество каналов сбора информации = 4, коллимация среза -0.25 см, сдвиг стола за оборот трубки -1.5 см. Следовательно, в соответствии с формулой (4) питч = 1.5/(0.25x4) = 1.5. Тогда в соответствии с формулой (3) CTDIvol = 18/1.5 = 12 мГр.

7. Pacчeт DLP.

DLP (произведение дозы на длину) рассчитывают по формуле:

$$DLP = \sum_{i} CTDIvol \cdot L, \qquad (5)$$

где L — длина области сканирования. Символ \sum означает, что необходимо просуммировать значения DLP для каждого из сканирований (например, многофазное исследование до и после в/в введения контрастного вещества).

Пример расчета DLP:

В нашем примере CTDIvol = $18 \text{ м}\Gamma p$, длина области сканирования 30 см. Тогда в соответствии с формулой (5) DLP = $12x30 = 360 \text{ м}\Gamma pxcm$. Такова поглощенная доза за все КТ-исследование.

8. Расчет эффективной дозы облучения при обследовании взрослых.

Эффективная доза облучения Е рассчитывается по формуле:

$$E = DLP \cdot E_{DLP}, \tag{6}$$

где E_{DLP} — нормализованная эффективная доза для конкретной области исследования. В соответствии с «Европейским руководством по критериям качества для компьютерной томографии» [2] E_{DLP} составляет:

Область	E _{DLP} ,
исследования	мЗв/мГрхсм
Головной мозг	0,0023
Шея	0,0054
Грудная полость	0,017
Брюшная полость	0,015
Таз	0,019

Пример расчета эффективной дозы:

В нашем примере DLP составило 360 мГрхсм. Тогда E = 360x0,017 = 6,1 мЗв.

9. Заполнение протокола дозиметрии.

Нами рассмотрен пример КТ-дозиметрии по протоколу исследования грудной полости. Финальный протокол дозиметрии будет выглядеть следующим образом.

Название учреждения		РНПЦ ОМР, Минск		
Название КТ-сканера		SOMATOM Volume Zoom (MCKT-4)		
Фирма-производитель		Сименс		
Год установки		2002		
Кто провел дозиметрию		Хоружик С.А.		
Дата		21.02.2008		
$N_{\underline{0}}$	Парамо	етр	Значение параметра	
Π/Π				
	Параметры	протокола исследо	вания	
1.	Область сканирования		Грудная полость	
2.	Название протокола сканирования		Thorax Routine	
3.	Технология сканирован	Многосрезовая		
4.	Напряжение, кВ	140		
5.	Сила тока, мА	300		
6.	Время ротации, сек	0,5		
7.	мАс	150		
8.	Коллимация среза T , см	0,25		
9.	Количество каналов сбо	4		
10.	Сдвиг стола за ротацию Δd , см		1,5	
11.	Длина области сканирования, см		30	
	Результат	ы измерений и расч		
1.	Показание дозиметра в	центре фантома	10,2	
2.	<i>CTDIc</i> , мГр	10,2		
3.	Показание на периферии фантома на 0°		22,2	
4.	Показание на 90°	22		
5.	Показание на 180°	21,3		
6.	Показание на 270°	22,2		
7.	<i>CTDIp</i> , мГр		22,0	
8.	<i>СТОІ</i> w, мГр	18,0		
9.	<i>CTDIvol</i> , мГр	12		
10.	DLP, мГрхсм	360		
11.	Е, мЗв		6,1	

10. Расчет эффективной дозы облучения при обследовании детей.

Поскольку дети более чувствительны к ионизирующему излучению, для расчета эффективной дозы облучения при КТ-исследованиях у детей в возрасте до 15 лет необходимо использовать повышающий коэффициент, зависящий от возраста ребенка [3].

Возраст	Голова и	Грудная	Брюшная
	шея	полость	полость и таз
Взрослые	1,0	1,0	1,0
15 л.	1,1	1.0 - 1.1	1.0 - 1.1
10 л.	1.2 - 1.3*	1.1 - 1.4	1.2 - 1.5
5 л.	1.6 - 1.7	1.2 - 1.6	1.2 - 1.6
1 г.	2,2	1.3 - 1.9	1.3 - 2.0
Новорожденные (0 л.)	2.3 - 2.6	1.4 - 2.2	1.4 - 2.4

^{*}Интервалы значений в зависимости от модели сканера.

Пример расчета эффективной дозы облучения у ребенка 1 года:

В рассмотренном выше примере при исследовании грудной полости CTDIvol составил 12 мГр. Если длина области сканирования (в соответствии с возрастом ребенка) составит 14 см, тогда в соответствии с формулой (5) DLP = 12x14 = 168 мГрхсм. С учетом повышающего коэффициента для данного возраста (возьмем среднее значение 1,6) эффективная доза = 168x0,017x1,6 = 4,6 мЗв. Такую дозу облучения получит ребенок при сканировании с параметрами КТ-исследования взрослого.

При исследовании детей нет необходимости использовать такие же высокие мАс и кВ, как при исследовании взрослых [4]. При сканировании грудной полости у ребенка в возрасте 1 года с адаптированными к массе тела параметрами (50 мАс, 120 кВ) СТDIw составит 10 мГр, CDTIvol – 6,7 мГр, DLP – 93 мГрхсм, E = 93x0,017x1,6 = 2,5 мЗв, что в 1,8 раза меньше, чем при сканировании с параметрами исследования взрослых.

Г. Литература.

- 1. Тарутин И.Г., Хоружик С.А., Чиж Г.В. Инструкция по применению «Протокол контроля качества работы рентгеновских компьютерных томографов». Утверждена МЗ РБ 26.06.2006, регистрационный № 192-1205. Режим доступа: http://nld.by/personal/downloads/by-ct-quality-control.pdf (18.01.2009г.).
- 2. European Guidelines on Quality Criteria for Computed Tomography, Report EUR 16262, Luxembourg (1999). OFFICE FOR OFFICIAL PUBLICATIONS OF THE EUROPEAN COMMUNITIES, ISBN 92-828-7478-8. Режим доступа: http://www.drs.dk/guidelines/ct/quality/download/EU html.zip (18.01.2009г.).
- 3. Khursheed A, Hillier MC, Shrimpton PC and Wall BF. Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol 2002; 75:819-830.
- 4. Vock P. CT dose reduction in children. Eur Radiol 2005; 15:2330-2340.