![]() |
![]() |
![]() |
|
Материалы Международного межуниверситетского семинара по диагностической и терапевтической радиологии Минск, 20-21 октября 2003 года |
Hybrid hyperthermia controlled by magnetic resonance
imaging.
P. Wust, W. Wlodarczyk, J. Nadobny, H. Fahling, J. Gellermann.
Charite – Universitatsmedizin, Campus Virchow-Klinikum, Berlin, Germany.
(Радиология в медицинской диагностике [современные технологии]
2003: 71-72)
Background: Objective of our development was the integration
of a multi-antenna applicator for part-body hyperthermia (BSD 2000/3D) in a
1.5 T MR-tomograph (Siemens Magnetom Symphony) in order to perform a noninvasive
MR-monitoring in real time to increase reliability and effectiveness of the
heat treatment (so-called hybrid hyperthermia).
Methods: The steps of this development are listed and described
in the following. A) Mechanical integration: The positioning unit is mechanically
coupled to the MR-gantry from the back side, and the body coil is utilised for
monitoring. Patient and applicator are moved on a sliding rod into the gantry
with special attention to various cables, connectors, catheters, hoses and sensor
wires (power supply, phase measurement, thermometry, water flow). B) Decoupling:
To increase signal-to-noise ratio, the hyperthermia antenna system (100 MHz,
1.500 W) and the MR-receiver (63.9 MHz) has to be decoupled in terms of high
frequency (filter) and electromagnetically (emv). Filter systems are inserted
into the high-power part to damp parasitary frequencies generated in the amplifier
system (particularly in the range 64 – 100 MHz) as well as in the receiving
part of the MR tomograph (around 100 MHz). A simultaneous operation of radiofrequency
hyperthermia and MR-system is possible at clinically relevant power levels up
to 1600 W. C) MR-monitoring: The processing of MR-data sets is performed in
a software platform developed at the Konrad-Zuse Institute (AMIRA) containing
the hyperthermia planning system HyperPlan. MR datasets are used for tumour
imaging (spin echo standard frequencies), for hyperthermia planning (T1-weighted
gradient echo, GRE, frequencies in equal- and opposed-phase techniques), and
for temperature and perfusion estimation according to the suitable sequences
such as proton resonance frequency method (PRF-method, phase evaluation of a
GRE sequence with long echo time), diffusion method (gradient-weighted GRE sequences
with different strengths for ADC distributions), flow and perfusion measurements
(analysing the contrast media dynamics). Major goal is completion of software
modules to make the procedure fast and user-friendly for online monitoring.
Results: We verified the performance of the hybrid system employing
a three-dimensional phantom in the SIGMA-Eye applicator. We tested the PRF-method
(phase differences), and utilised the water bolus and a few interior reference
temperatures for calibration. This results in an accuracy of the MR-temperature
of ±0.5 °C in comparison to direct temperature measurements. Clinically, we
treated 108 patients since 2002. In 58/108 (54%) patients with tumors in the
pelvis or lower extremity MR-thermography was possible. In 14/108 (13%) the
(small) tumor was not clearly identified on the temperature scans, but temperature
was measurable in the surrounding normal tissues. In 6/108 (6%) a navigation
system was required to compensate motion by respiration. Only in 27% of patients
MR-thermometry was not achieved because of tumor location (thorax, abdomen),
restlessness of the patient and intolerance to the MR and/or hyperthermia.
Discussion: MR-thermography was possible in the hybrid approach
for the majority of patients. However, MR-temperatures (derived from phase differences)
are a superposition of perfusion and temperature changes. Therefore, further
development is strongly needed to use T1-relaxation, diffusion and contrast
media dynamics for parameter identification (to separate temperature and perfusion).
In the next step, the online registered MR datasets must be utilized to establish
a feed-back control in order to optimise the pattern (by variation of phases).
This probably requires multiantenna applicators with stable phase conditions
in the feed points, online measurement of these actual phases and sufficient
efficiency.
|